Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors.
نویسندگان
چکیده
We utilize an organic polymer buffer layer between graphene and conventional gate dielectrics in top-gated graphene transistors. Unlike other insulators, this dielectric stack does not significantly degrade carrier mobility, allowing for high field-effect mobilities to be retained in top-gate operation. This is demonstrated in both two-point and four-point analysis and in the high-frequency operation of a graphene transistor. Temperature dependence of the carrier mobility suggests that phonons are the dominant scatterers in these devices.
منابع مشابه
Probing transconductance spatial variations in graphene nanoribbon field- effect transistors using scanning gate microscopy
Related Articles The influence of gate dielectrics on a high-mobility n-type conjugated polymer in organic thin-film transistors APL: Org. Electron. Photonics 5, 21 (2012) Graphene-protein bioelectronic devices with wavelength-dependent photoresponse Appl. Phys. Lett. 100, 033110 (2012) Model of random telegraph noise in gate-induced drain leakage current of high-k gate dielectric metal-oxidese...
متن کاملEffect of high- gate dielectrics on charge transport in graphene-based field effect transistors
The effect of various dielectrics on charge mobility in single-layer graphene is investigated. By calculating the remote optical phonon scattering arising from the polar substrates, and combining it with their effect on Coulombic impurity scattering, a comprehensive picture of the effect of dielectrics on charge transport in graphene emerges. It is found that though highdielectrics can strongly...
متن کاملField-effect transistors built from all two-dimensional material components.
We demonstrate field-effect transistors using heterogeneously stacked two-dimensional materials for all of the components, including the semiconductor, insulator, and metal layers. Specifically, MoS2 is used as the active channel material, hexagonal-BN as the top-gate dielectric, and graphene as the source/drain and the top-gate contacts. This transistor exhibits n-type behavior with an ON/OFF ...
متن کاملHigh-κ oxide nanoribbons as gate dielectrics for high mobility top-gated graphene transistors
Deposition of high-κ dielectrics onto graphene is of significant challenge due to the difficulties of nucleating high quality oxide on pristine graphene without introducing defects into the monolayer of carbon lattice. Previous efforts to deposit high-κ dielectrics on graphene often resulted in significant degradation in carrier mobility. Here we report an entirely new strategy to integrate hig...
متن کاملFlexible Graphene Field-Effect Transistors Encapsulated in Hexagonal Boron Nitride.
Flexible graphene field-effect transistors (GFETs) are fabricated with graphene channels fully encapsulated in hexagonal boron nitride (hBN) implementing a self-aligned fabrication scheme. Flexible GFETs fabricated with channel lengths of 2 μm demonstrate exceptional room-temperature carrier mobility (μFE = 10 000 cm(2) V(-1) s(-1)), strong current saturation characteristics (peak output resist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nano letters
دوره 9 12 شماره
صفحات -
تاریخ انتشار 2009